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Abstract

Satellite observations of trace gases in the atmosphere offer a promising method
for global verification of emissions and improvement of global emission inventories.
Here, an inverse modelling approach based on four-dimensional variational (4D-var)
data assimilation is presented and applied to synthetic measurements of atmospheric5

methane. In this approach emissions and initial concentrations are optimised simulta-
neously, thus allowing inversions to be carried out on time scales of weeks to months,
short compared with the lifetime of methane. Observing System Simulation Exper-
iments (OSSEs) have been performed to demonstrate the feasibility of the method
and to investigate the utility of SCIAMACHY observations for methane source estima-10

tion. The impact of a number of parameters on the error in the methane emission
field retrieved has been analysed. These parameters include the measurement error,
the error introduced by the presence of clouds, and the spatial resolution of the emis-
sion field. It is shown that 4D-var is an efficient method to deal with large amounts of
satellite data and to retrieve emissions at high resolution. Some important conclusions15

regarding the SCIAMACHY measurements can be drawn: (i) the observations at their
estimated precision of 1.5 to 2% will contribute considerably to uncertainty reduction in
monthly, subcontinental (∼500 km) methane source strengths; (ii) it is essential to take
partly cloudy pixels into account in order to achieve sufficient spatial coverage; and (iii)
the uncertainty in measured cloud parameters may at some point become the limiting20

factor, rather than the uncertainty in measured methane.

1. Introduction

Methane (CH4) and carbon dioxide (CO2) are the most important anthropogenic green-
house gases. Atmospheric methane concentrations have increased by around 150%
since pre-industrial times. This corresponds with an estimated radiative forcing of25

0.48 W m−2, which amounts to 20% of the total radiative forcing due to well-mixed
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greenhouse gases (IPCC, 2001; Lelieveld et al., 1998). Apart from this direct forcing
there are also indirect greenhouse effects through chemistry: increases in CH4 lead to
higher levels of tropospheric ozone and stratospheric water vapour. Finally, changes in
CH4 influence the oxidising capacity of the atmosphere.

More than half of the present-day methane emissions is of anthropogenic origin,5

the most important sources being fossil-fuel production, domestic ruminants, rice cul-
tivation and waste handling (e.g., Lelieveld et al., 1998). Natural emissions originate
mainly from wetlands. The uncertainties of the fluxes in most of these categories are of
the order of 50% on the global scale and may be larger on regional scales. Therefore,
improved knowledge of methane source distributions is needed to quantitatively under-10

stand observed changes in atmospheric concentrations. From a political point of view,
assessment and monitoring of emissions is required in response to the Kyoto Protocol,
which calls for a reduction in greenhouse gas emissions by the year 2010.

Existing estimates of methane sources can be improved by inverse modelling, us-
ing a transport model to infer emissions from measured atmospheric concentrations.15

This technique has been extensively applied using surface observations (Hein et al.,
1997; Houweling et al., 1999; Chen, 2003; Dentener et al., 2003; Butler et al., 2004;
Mikaloff Fletcher et al., 2004a,b; Bergamaschi et al., 2005). However, surface mea-
surements are only available from a limited number of monitoring stations, mainly at
remote locations. The large distance between methane sources and the observation20

locations combined with atmospheric mixing causes an entanglement of signals from
different source regions. As a result, the observations contain statistically significant
information on emissions only on continental scales at best. Surface observations
are also available at locations with nearby emissions. These measurements have a
more direct relation with the sources, and are thus useful for estimating regional-scale25

source strengths (Bergamaschi et al., 2005), although the correct representation of
these point measurements by transport models remains a challenge. Specifically, if
point measurements are influenced by local sources, their interpretation is difficult.

Satellite observations hold a future promise to overcome these problems because of
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their global coverage and their large sampling volumes, thus posing less representativ-
ity problems. Methane has been measured from space both in limb and in nadir mode.
Limb observations (e.g., Randel et al., 1998) are mainly restricted to the stratosphere,
and thus contain hardly any information on the distribution of surface sources. Nadir
observations of atmospheric methane were made by the IMG instrument on board5

ADEOS (Clerbaux et al., 2003). However, being an infrared spectrometer, IMG is rela-
tively insensitive to the lower troposphere, and the relation between measured concen-
trations anomalies and their source is rather indirect. Recently, satellite observations
of methane in the near-infrared region have become available from the SCIAMACHY
(SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instru-10

ment (Goede et al., 1991; Bovensmann et al., 1999) on board ESA (European Space
Agency)’s environmental satellite ENVISAT, launched 1 March 2002 (Buchwitz et al.,
2005; Frankenberg et al., 2005). In the near infrared most sunlight reaching the satel-
lite has been backscattered by the Earth’s surface, resulting in measurements with an
almost constant sensitivity from the stratosphere down to the boundary layer.15

Methane is a well-mixed greenhouse gas, with a lifetime of around 10 years. Hence,
the variability in its concentration is small. Total column measurements must have a
high precision (of the order of 1%) in order to be useful. It is a challenge to achieve
such precisions. In addition, there are many factors that may lead to systematic bi-
ases in the observations, such as errors in the assumed vertical profiles of pressure,20

temperature, and water vapour, uncertainties in the presence and characterisation of
clouds and aerosols, errors in the calibration of radiance measurements, and uncer-
tainties in spectroscopic reference data or instrumental parameters (e.g., the detector
slit function).

Inverse modelling of trace gas emissions from satellite measurements has been re-25

stricted so far to shorter-lived species such as NO2 (Martin et al., 2003), CO (Pétron
et al., 2004), and the combination of both (Müller and Stavrakou, 2005). Concern-
ing long-lived greenhouse gases, only synthetic studies have been reported, limited to
CO2 so far. Rayner et al. (2002) investigated the utility of CO2 satellite observations for
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inverse modelling, and specifically assessed the influence of satellite orbit, scan geom-
etry and clouds. In addition, Houweling et al. (2004) compared the potential benefits of
three different – existing and planned – satellite instruments measuring CO2.

In this paper we present a method for deriving CH4 emissions from satellite measure-
ments. The method is based on four-dimensional variational (4D-var) data assimilation.5

4D-var has been extensively applied in numerical weather prediction (e.g., Talagrand
and Courtier, 1987). Fisher and Lary (1995) introduced the technique in the field of
atmospheric chemistry. Eskes et al. (1999) used 4D-var for the assimilation of total
ozone measurements from the Global Ozone Monitoring Experiment (GOME) satellite
instrument.10

The conventional synthesis technique is computationally only feasible if one of two
conditions is satisfied. (i) Relatively few parameters are optimised. This is the the so-
called big-region approach, which has the disadvantage that it introduces aggregation
errors (Kaminski et al., 2001; Engelen et al., 2002). (ii) Relatively few measurements
are considered. In this case, the sensitivity of each individual measurement to the15

emissions may be calculated with an adjoint model. In contrast, satellite instruments
such as SCIAMACHY produce a large volume of data at always changing locations,
for which the conventional synthesis approach is not appropriate. Pre-averaging the
measurements to weekly or monthly means over large regions results in a loss of
information on the smaller scale, both in time and in space. On the other hand, 4D-var20

efficiently handles large volumes of data, and is thus particularly well suited for inverse
modelling of satellite data.

Since satellites provide high temporal and spatial resolution measurements of atmo-
spheric concentrations, it is possible, in principle, to resolve emissions on time scales
of weeks to months and regional spatial scales, when the observations are accurate25

enough. A problem may arise when inversions over short (∼1 month) time scales
are attempted. In this case, the influence of the initial condition on the methane con-
centrations during the assimilation window cannot be neglected (Peylin et al., 2005).
Fortunately, this problem can be solved in an elegant way within the 4D-var scheme, by
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including the initial concentrations in the control vector. The size of the control vector
thus becomes large but the increases in computation time are relatively minor. The fea-
sibility of this approach in air quality models was demonstrated by Elbern and Schmidt
(2002). In this study we will show, using SCIAMACHY measurements, that it is possible
to distinguish between errors in initial concentrations and emissions.5

The goal of this paper is twofold: (i) to present and illustrate the inverse modelling
methodology for methane; (ii) to assess the utility of SCIAMACHY measurements for
estimating CH4 sources. This has been achieved by performing a series of so-called
Observing System Simulation Experiments (OSSEs). The dependence of the inversion
result on a number of variables, such as errors in the measurement of CH4 and cloud10

parameters, the resolution of the inversion and a priori errors in the emission field, is
investigated. Our method can similarly be employed to define requirements for future
near-infrared satellite instruments for CH4 source attribution.

The paper is structured as follows. In Sect. 2, the methodology is outlined. This
includes descriptions of the transport model (Sect. 2.1), the 4D-var method (Sect. 2.2),15

the satellite data (Sect. 2.3), and the set-up of the OSSE experiments (Sect. 2.4).
In Sect. 3, the results of the experiments are discussed. Finally, Sect. 4 contains
conclusions and recommendations for future research.

2. Method

2.1. Model20

The model used in the present study is the global chemistry-transport model TM4
(Dentener et al., 2003, and references therein). The model is run on a spatial resolu-
tion of 3◦×2◦, with 25 hybrid σ-pressure layers in vertical direction up to 0.1 hPa. It is
driven by six-hourly meteorological fields from the European Centre for Medium Range
Weather Forecast (ECMWF) operational data. These fields include global distributions25

for horizontal wind, surface pressure, temperature, humidity, liquid and ice water con-
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tent, cloud cover and precipitation. Key processes included are mass-conserved tracer
advection, convective tracer transport, boundary-layer diffusion, photolysis, dry and
wet deposition as well as tropospheric chemistry including non-methane hydrocarbons
to account for chemical loss by reaction with OH (Houweling et al., 1998). Except for
methane, anthropogenic emissions are based on Van Aardenne et al. (2001), which is5

in turn based on the widely used EDGAR (Emission Database for Global Atmospheric
Research) database (Olivier et al., 1999), while natural emissions are as in Houweling
et al. (1998).

Differences between the model versions employed here and in Dentener et al. (2003)
are: (i) A mass-conserving preprocessing of the meteorological input is applied accord-10

ing to Bregman et al. (2003); (ii) the stratospheric destruction of methane by reaction
with OH, Cl and O(1D) is taken into account by applying correction factors to the model-
calculated destruction rate based on a 2-D-model (G. Velders, personal communica-
tion); (iii) CH4 concentrations above 50 hPa are nudged to the monthly-mean zonal
HALOE/CLAES climatology from UARS (Randel et al., 1998); (iv) CH4 emissions are15

as described in Table 1.
The inverse modelling experiments are done with a single tracer version of TM4. In

this version, CH4 oxidation is prescribed by monthly-mean OH fields with a 3-hourly
resolution of the diurnal cycle, which are extracted from a full-chemistry simulation.
Additionally, the tracer version contains CH4 sources and stratospheric sinks (includ-20

ing nudging to HALOE/CLAES data) as described above. It has been verified that
CH4 columns simulated by the single tracer version differ less than 0.2% from the
full-chemistry version over a 1-month simulation period. For the data assimilation an
adjoint model of the single tracer version has been constructed.

2.2. Inversion method25

The CH4 source estimation is based on four-dimensional variational (4D-var) data as-
similation (e.g., Talagrand and Courtier, 1987). The 4D-var technique involves the
minimisation of a cost function J with respect to a control variable v , which in our
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case consists of the two-dimensional (2-D) CH4 emission field s along with the three-
dimensional (3-D) atmospheric CH4 initial concentration field c0: v=(s,c0). The cost
function is defined as:

J(v ) =
1
2

(v − v b)TB−1(v − v b) +
1
2

n∑
i=0

(Hixi − yi )
TR−1

i (Hixi − y i ). (1)

The first term in Eq. (1) is the background term, which measures the deviation of the5

control variable from its first guess v b (also called background or a priori); the second
term is the observation term, which measures the deviation of the model simulation
from observations during the time window of the assimilation. The observations at
time ti are denoted by y i . The observation operators Hi translate the model state xi
to ’model equivalents’ of the observations. These operators include horizontal inter-10

polation from the model grid points to the locations of the satellite measurements and
subsequent vertical integration taking into account the averaging kernels of the satellite
measurements (see Sect. 2.3). The background error covariance matrix B consists of
the covariances of expected errors in v b. The observation error covariance matrices
Ri consist of the covariances of expected errors in yi .15

The model state at a given time is a function of the initial model state:

xi = Mi−1xi−1 = Mi−1 · · ·M0x0, (2)

where Mi denotes integration of the model from time i to time i+1. Note that both Mi
and Hi can be written as matrices, since they represent linear operators in the present
study.20

In order to minimise the cost function, its gradient with respect to the control vector
is needed:

∇J(v ) = B−1(v − v b) +
n∑

i=0

MT
0 · · ·M

T
i−1HT

i R−1
i (Hixi − y i ). (3)
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The gradient includes the adjoint model operators MT
i . It is efficiently calculated by

performing one integration of the adjoint model, starting with a zero field, and adding
measurement innovations at each measurement time. The minimisation is performed
iteratively using the quasi-Newton routine m1qn3 (Gilbert and Lemaréchal, 1989).

The convergence to the minimum of the cost function can be considerably improved5

when pre-conditioning is applied (Courtier et al., 1994). To this end, a transformation
of the control vector is defined as v b−v=Aw , where B=AAT . With this transformation
the background part of the cost function becomes simply Jb=

1
2w

T
w . Note that this

pre-conditioning has the additional advantage that B does not have to be inverted. At
the start of every forward integration we only need to multiply w with A, while at the10

end of every adjoint iteration the observation part of the gradient needs to be multiplied
with AT . Hence, we specify A rather than B.

The background error covariance matrix is created as follows. For the emission part,
the variances are assumed to be proportional to the emissions themselves: σs∼s. Er-
rors in emissions are assumed to be correlated over a distance defined by the decor-15

relation length scale Ls. Accordingly, the correlations are modelled by a Gaussian
function of the distance between grid cells. This scale defines the effective resolution
of the emission analysis.

For the concentration part, the covariance matrix is obtained with the NMC method
(Parrish and Derber, 1992). The principle of this method is that A (or actually B) is20

estimated from the difference between two perturbed forward model runs. In our case,
one run is driven by meteorological fields from a 24-h forecast, while the other is driven
by fields from a 48-h forecast. The matrix A is split into a horizontal and a vertical
part, A=Av⊗Ah. We calculate Av explicitly, whereas Ah is parameterised by fitting
the decorrelation length scale of a Gaussian function. This procedure yields a length25

scale of around 500 km. However, in our assimilation experiments we treat the error
correlation length scale of the initial concentration field Lc0

as a free parameter, for
which a default value of 1000 km is chosen (see Sect. 3). Defined in this way, the
covariance is a measure of uncertainties in modelled methane related to uncertainties
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in the underlying meteorological analyses.
The vertical correlations between concentration errors are illustrated in Fig. 1. The

errors depend strongly on the variability in methane concentrations, since this deter-
mines how much impact a modification of the wind field has on the concentrations at
a particular point. This variability is relatively high in the lower troposphere (due to5

emission patterns), decreases towards the troposphere, and is very high in the strato-
sphere.

To save calculation time, the control vector is not made up of the methane concen-
trations at all vertical levels, but rather of a number of vertical distributions defined by
the leading eigenvectors of Bv . We took 15 vertical distributions and verified that this10

gave nearly identical inversion results compared to taking all 25 vertical levels.
Correlations between errors in emissions and concentrations are assumed to be

zero.

2.3. Satellite data

For a quantitative assessment of methane emissions derived from SCIAMACHY ob-15

servations, it is crucial that measurement details are simulated accurately. Therefore,
we attempt to model the observations as realistically as possible.

ENVISAT operates in a nearly polar, sun-synchronous orbit at an altitude of 800 km,
crossing the equator at 10:00 a.m. local time. SCIAMACHY offers a number of mea-
surement geometries, of which the nadir mode is relevant for measuring trace gases20

in the troposphere. Total columns of methane have been retrieved by several groups
based on different parts of the measured spectrum in the near infrared. Frankenberg
et al. (2005) used measurements from spectral channel 6 (around 1650 nm), whereas
Buchwitz et al. (2005) employed spectral channel 8 (around 2270 nm). This paper is
based on simulated observations from channel 8, for which the ground pixel size is25

120×30 km. The swath width of the SCIAMACHY measurements is 960 km. Complete
spatial coverage near the equator is achieved in six days.

Column-averaged methane mixing ratios can be obtained by normalising the total
9414
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CH4 column with some well-known atmospheric trace gas column. This method has
been demonstrated using O2 (Buchwitz et al., 2005) and CO2 (Frankenberg et al.,
2005). One advantage of using normalised columns is that uncertainties in surface
pressure cancel out. If the window in which the reference gas is retrieved is fur-
thermore spectrally close to the CH4 window, as is the case for CO2 in channel 6,5

one also partly cancels out instrument uncertainties (slit function, calibration errors, in-
strument response) and radiation transport uncertainties (aerosol scattering, albedo),
which would otherwise lead to systematic errors in retrieved CH4.

The precision of near-infrared methane retrievals is strongly limited by the amount
of radiation that is backscattered from the Earth’s surface. This is determined mainly10

by the albedo and the solar zenith angle. As shown below, the use of measurements
partially influenced by clouds is beneficial. An additional advantage of the relative
measurement approach over the direct CH4 retrieval is thus that the higher albedo of
clouds boosts the signal to noise ratio, in particular over the ocean, allowing higher
precision methane retrieval. The significant uncertainties in the cloud characterisation15

partly cancel in the retrieved relative column mixing ratio. The synthetic measurements
in this study are assumed to have a random error as shown in Fig. 2. In some of the
sensitivity experiments described in Sect. 3.2 the measurement error is multiplied by a
constant factor without changing the dependence on albedo and solar zenith angle.

Cloud information is needed to determine the light path seen by the satellite instru-20

ment. The FRESCO algorithm (Koelemeijer et al., 2001) has been used to calculate
the effective cloud fraction f and cloud-top height zc from all available SCIAMACHY
pixels in March. A known problem with the version of FRESCO used here is that it
produces non-zero cloud fractions over cloud-free desert regions. Meanwhile an im-
proved version is available that overcomes this problem. In this study, all cloud fractions25

over deserts that were smaller than 0.35 to 0 in our simulations. Figure 3 shows the
resulting average cloud fraction, along with the distribution of cloud-free pixels. This
figure also gives an indication of the data coverage, and shows that one orbit over the
western Pacific is always missing in our dataset.
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An estimate of the albedo is also needed. This is taken from a monthly surface
reflectivity data set for the 2.2–2.35 µm region described in Yu and Drummond (1998).
Values of the surface albedo αs range from 0.01 over water to around 0.3 over deserts.
For clouds an albedo αc of 0.5 is assumed.

The sensitivity of the tracer column retrieved from the satellite measurement to a5

tracer abundance at a certain height z is reflected by the so-called averaging kernel
AK (Rodgers, 2000; Eskes and Boersma, 2003). Here, a simplified AK is applied,
which takes into account the effect of clouds:

AK(z) = 1, for z > zc;

=
αs(1 − f )

αs(1 − f ) + αcf
, for z < zc. (4)

10

where f is the cloud fraction and zc is the cloud-top height. It should be noted that,
apart from the effect of clouds, the real AK depends somewhat on height (Buchwitz
et al., 2005). When real SCIAMACHY data will be used, these height-dependent av-
eraging kernels, which are part of the retrieval product, can be easily applied in the
assimilation.15

2.4. Setup of experiments

We present a number of Observing System Simulation Experiments (OSSEs) (Atlas,
1997). Such experiments consist of the following steps.

1. The ’true’ control vector v t is defined as a perturbation to the background:

v t = v b + ∆. (5)20

2. Synthetic satellite measurements are generated by sampling a free model run
starting from the true control vector. This sampling takes into account the av-
eraging kernel as given in Eq. (4), i.e.: model profiles are convoluted with the
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averaging kernel to obtain the column-averaged mixing ratio. The AK is calcu-
lated from the ’true’ cloud and albedo parameters (ft etc.), which are assumed
to be randomly perturbed compared to the observed ones (fo etc.). The random
errors are assumed to be 0.1 for the cloud fraction, 50 hPa for the cloud-top pres-
sure, and 10% for the surface albedo. Also, the cloud parameters are restricted5

within a physical range. Formally, the true cloud parameters are determined as
follows:

ft = min [1,max [0, fo + 0.1ε]], (6)

pc,t = min [ps,max [140, pc,o + 50ε]], (7)

αs,t = min [1,max [0.005, αs,o(1 + 0.1ε)]], (8)10

where pc and ps are the cloud-top and surface pressure in hPa, respectively, and
ε is a random number drawn from the normal distribution with zero mean and
unit standard deviation. To the resulting column-averaged mixing ratio a random
measurement error according to Fig. 2 (using the pixel albedo, αs(1−f )+αcf , as
input) is added.15

3. The measurements are assimilated, and an optimal (a posteriori) estimate of the
control vector is produced.

Comparison of the a posteriori estimate with the truth gives an indication of the success
of the inversion in terms of drawing information on the control vector from the available
observations. As a quantitative measure of the reduction in the CH4 emission error we20

use the RMS reduction factor r , defined as:

r =

√
(sa − st)T (sa − st)

(sb − st)T (sb − st)
, (9)

where st, sb, and sa are the true, a priori (background), and a posteriori (analysed)
flux fields, respectively.
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The random errors assumed for the cloud parameters result in a random error in
observed column-averaged CH4 mixing ratios of around 10 ppbv. Moreover, the non-
linearities in relations (4) and (6)–(8) give rise to systematic errors in the mixing ratio,
which depend on the cloud parameters themselves in a complicated way. For exam-
ple: the capping off of the cloud fraction at 0 leads to a negative bias in the observed5

methane columns for low cloud fractions. These systematic errors are relatively small
(∼0.5 ppbv) but can give considerable biases in retrieved emissions, as will be dis-
cussed later.

As mentioned before, experiments have been performed for the month March 2004.
Figure 4a and b show the a priori emissions and monthly-mean CH4 columns for this10

month, respectively. Three cases will be investigated in Sect. 3. The first consists of an
increase in wetland emissions by 50% (Fig. 4c). Such an increase in monthly emissions
is within the estimated uncertainty range. The effect of the enhanced emissions on the
atmospheric columns after one month is only ≈1.5% at most (Fig. 4d). This low impact
of the emissions is caused by the long lifetime of methane and poses a huge challenge15

to the measurements. The second case is the same except that the increase is only
25%. The third case consists of a 50% increase in fossil-fuel emissions combined with
a 50% decrease in waste-handling emissions. This case is illustrated in Figs. 4e and f.
Note that the scale in panel (f) extends only half that of panel (d).

3. Results20

3.1. Demonstration of the method

In this section the inverse modelling method is demonstrated. It will be shown that
the assimilation system successfully retrieves information on CH4 emissions from the
SCIAMACHY measurements, and that it can discriminate between errors in a priori
emissions and initial concentrations.25

We start with the emission perturbation consisting of a 50% increase in the wetland
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source (see Fig. 4c). A time window of 1 month (March 2004) is chosen. Further
‘standard’ settings are as follows. The a priori error in emissions is assumed to be
100%. The a priori error in atmospheric concentrations is as determined by the NMC
method (see Fig. 1), multiplied by a factor 2. This factor reflects the weight given to
the initial concentration field, relative to the emissions, for explaining the observations.5

The factor 2 was chosen on the basis of a number of experiments, as will be discussed
later. The error decorrelation length scales for emissions, Ls, and concentrations, Lc0

,
are both set to 1000 km. The motivation for these values and the sensitivity to other
choices will be discussed in Sect. 3.2, where also the sensitivity of the inversion results
to many other settings is investigated.10

First, an idealised inversion was performed, in which the CH4 observation error was
set to zero, and all pixels were assumed to be cloud-free. Furthermore, the control
vector was formed by the wetland emissions only. This inversion showed convergence
of the cost function to nearly zero, with a reduction of the cost function gradient by a
factor 500 after 20 iterations. At that point, the RMS reduction factor r , Eq. (9), was15

0.13 and still decreasing.
Next, we turn to a reference case for realistic observations. The measurements are

generated as explained in Sect. 2.4, with the CH4 observation errors as in Fig. 2. To
construct the observation error covariance matrices Ri , these same values are used
– meaning that the CH4 observation errors are perfectly known – augmented with an20

error of 10 ppbv to reflect errors in cloud parameters.
The convergence behaviour of the iterative analysis scheme is illustrated in Fig. 5.

Panel (a) shows that the relative reduction in the cost function is marginal. The main
reason for this is that the a priori run matches the observations already quite well.
Differences between the truth and a priori runs are near zero at most locations and25

around 1.5% at most (Fig. 4d), which is of the order of the measurement precision.
The gradient of the cost function reduces by a factor 20–30 (panel b). This is typical:
the experiments presented in Sect. 3.2 have reductions in the gradient between 10 and
100. Finally, panel (c) shows the RMS reduction factor r , as defined in Eq. (9). It can be
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seen that r has its minimum after 8 iterations. According to this measure, the analysis
does no longer improve afterwards, although the cost function and its gradient still
reach lower values. This behaviour is generally observed in our synthetic experiments,
and is interpreted as follows. In the first iteration steps, the assimilation retrieves the
main features in the emission field. Subsequent iterations do lead to further reductions5

in the cost function and its gradient (although the evolution of the gradient is often quite
‘wild’), but these reductions are obtained by ‘fitting the noise’ in the observations, rather
than by extracting additional information from the observations. From Fig. 4 it is clear
that choosing a threshold for the cost function gradient as the convergence criterion
will not give the best emission estimate in terms of Eq. (9). Therefore, the following10

strategy is adopted: for every experiment 20 iterations are performed. Afterwards, the
iteration step for which the cost function gradient is lower than the average gradient in 8
subsequent iterations (the exact number is not crucial here), is chosen as the analysis.
This criterion basically states that there is no longer a substantial decrease in the cost
function gradient.15

Figure 6 shows the deviation of the analysis from the true emissions for experiment 1.
Comparison with the prior deviation shows that the analysis has indeed improved the
emission estimate considerably (note the different colour scales in Figs. 4c and 6).
RMS reduction factors for various sensitivity experiments are summarised in Table 2.
The present experiment is number 1 in Table 2, and yields a value r=0.38. We verified20

that the RMS reduction factor is robust against the particular noise added to the obser-
vations. A number of inversions with observations based on a different set of random
numbers gave very similar values of r , although the spatial distribution of the analysed
emission increments looked quite different.

Figure 7 shows the relative true minus a priori and analysis increment fields (panels a25

and b, respectively). The former is a ‘patchy’ field since it follows the pattern of wetland
emissions. The latter gives the result of the inversion: a smooth field with spatial
correlation scales of typically 1000 km, the decorrelation length scale Ls that has been
used for the background error correlation matrix. Variations on smaller scales cannot
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be resolved by the inversion. On the other hand, a smaller value of Ls – with the
extreme being uncorrelated emissions – may introduce spurious small-scale structures
in the analysed emission field if there is not enough information in the measurements
to resolve emissions on this scale. This will be further investigated in Sect. 3.2.

As mentioned before, not only emissions but also concentrations are optimised in5

the inversion. This approach is necessary since the initial condition has a large impact
on methane concentrations during the assimilation window, and errors therein will thus
deteriorate the analysed emission field. To illustrate this, an inversion has been per-
formed for a case in which the true concentration field deviated from the background
(see Fig. 8a). The deviation was created by running the model in the previous month10

(February 2004) with perturbed emissions, in this case a 50% increase in the fossil-
fuel and waste-handling sources, a 50% decrease in the ruminants source, and a 25%
decrease in the wetland source. Figure 8b shows the deviation of analysed emissions
from the truth when only emissions are optimised. Clearly, the system tries to explain
observed high concentrations over the USA by enhanced emissions in that region,15

while they were actually due to an error in the initial concentration field. Similarly, the
error in initial concentrations over the southern-hemispheric continents leads to an un-
derestimation of emissions. The errors in concentrations over north-west Russia do
not lead to corresponding increments in the emission analysis because they are not
observed (see Fig. 3).20

Figures 8c and d show the result of an inversion in which both emissions and ini-
tial concentrations are optimised. Indeed, a substantial part of the errors in the initial
concentration field has been recognised as such (panel c), leading to a better estima-
tion of the emission field (panel d). The RMS reduction factors are 0.43 and 0.70 for
an inversion with and without optimisation of the initial concentration field, respectively25

(experiments 2a and 2c in Table 2). This is an important result, showing that the as-
similation system can distinguish between errors in the initial concentration field and
emissions during the month. It thus enables the use of relatively short time windows
in the inversion. On the other hand, the time frame cannot be made arbitrarily short.
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The inverse model draws its information on emissions from the time evolution of atmo-
spheric concentrations. Therefore, two requirements determine the minimum length of
the assimilation window. First, the time frame should be long enough that emissions
cause measurable changes in the atmospheric concentrations. Second, enough ob-
servations should be available to allow the discrimination between initial concentrations5

and emissions. A trial inversion with one week of SCIAMACHY measurements showed
that such a time frame is too short to obtain a meaningful emission estimate.

Figure 9 shows the difference in column-averaged concentration between observa-
tions and background/analysis over a part of South America. In this region the obser-
vations are lower than the background simulation during the first days of the month.10

After some time (3 to 6 days), this situation is reversed, because the true emissions
are larger than the prior emissions. In experiment 2a, the inversion manages to explain
these differences relatively well in terms of a decrease in initial concentrations and
an increase in emissions. In experiment 2c, the initial concentrations cannot be ad-
justed, which is compensated by an underestimated emission increment. As a result,15

the analysed concentrations are initially too high and finally too low.
A second advantage of including the initial concentration field in the optimisation is

that some systematic errors in the satellite observations can be absorbed by the cor-
responding part of the control vector, so that they affect the retrieved emissions only
to a limited extent. As was mentioned in Sect. 2.4, the synthetic observations contain20

systematic biases due to the errors assumed in the cloud parameters. We performed
an inversion as experiment 1 but without allowing the initial concentration field to be
adjusted (experiment 3 in Table 2). Indeed, this experiment gave a considerably worse
result, with r=0.48 instead of 0.38. In particular, if systematic errors are relatively con-
stant in time and space during the assimilation window, they can be partly absorbed25

by changing the initial concentration field in the model. The measurement bias is then
transferred to the model simulation, while the analysed emissions are relatively un-
affected. In reality, many systematic errors will vary in time and space, so that the
above does not work. In any case, all possible efforts should be made to remove any

9422

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/9405/acpd-5-9405_p.pdf
http://www.atmos-chem-phys.org/acpd/5/9405/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 9405–9445, 2005

Methane emissions
from SCIAMACHY

observations

J. F. Meirink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

observation bias by careful validation, before the inverse modelling is applied.

3.2. Sensitivity studies

Several sensitivity experiments have been performed in order to investigate the impact
of various parameters on the inversion result. They are summarised in Table 2. Ex-
periments 1 to 3 have been discussed in Sect. 3.1, except for experiment 2b. In this5

experiment the a priori error in the concentrations was taken exactly as found with the
NMC method. The value of r is about equal to the experiment with a doubled error
(2a). The ratio between a priori errors in emissions and concentrations determines
the relative importance given to both parts of the control vector in the analysis of the
measurements. In general, we found best results when taking a scaling factor of 2 for10

the concentration errors. Therefore, further experiments are performed with this value.

3.2.1. Observation error

Experiments 4a to d (Table 2) assess the impact of the observation error on the error in
retrieved emissions. The observation error has been multiplied by a number of constant
factors compared to Fig. 2. A decrease in the observation error leads to a decrease15

in the RMS reduction factor, as expected. However, on going from a multiplication
factor of 2 to 0.25, the performance improves only slightly. This suggests that when the
CH4 measurements reach a certain precision, other factors start becoming dominant.
One important factor is the uncertainty in cloud parameters, which will be discussed in
Sect. 3.2.2.20

It should be noted that the RMS reduction factors obtained depend heavily on the
truth-prior perturbation applied. Experiments 11a to d show results for the 25%-wetland
perturbation, in which the deviations of the atmospheric concentrations are half those
of the reference case. As a result, the performance is worse than the corresponding
experiments 1 and 4a to c. Even an improvement in the measurement precision with25

a factor 8 cannot compensate for the decreased atmospheric signal (compare experi-
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ments 11a and 4c).
The experiments with a 50%-perturbation of both fossil-fuel and waste handling

emissions show an even worse performance, with r-values between 0.90 (exp. 12a)
and 0.97 (exp. 12d). This has a number of reasons. (i) The absolute difference be-
tween true and a priori emissions is simply lower than for the wetland case. (ii) The5

main atmospheric signal is at higher northern-hemispheric latitudes, where the solar-
zenith angle is higher and observations are thus less precise. (iii) A considerable part
of the atmospheric signal – mainly over Siberia – is not observed at all or only in the
presence of high cloud cover in this particular month. (iv) The combination of a positive
(fossil fuel) and a negative (waste handling) perturbation leads to dipole-like features10

in the true-prior emission field, which cannot be reproduced by an inversion employing
a relatively large decorrelation length scale for the a priori errors in the emissions. This
last point can be improved upon by distinguishing between different source types in the
inversion, as is shown in Sect. 3.2.3.

3.2.2. Clouds15

Experiment 5 (Table 2) illustrates – for the 50%-wetland case – what happens when
only cloud-free pixels are taken into account. This leads to a large reduction in the
number of observations: only 12% remain, mostly located over desert regions (see
Fig. 3b). Therefore, they carry relatively little information on emissions. The result is
that the imposed emission perturbation cannot be recovered at all (r=1.60). A value20

r>1 signifies that the analysis is further away from the truth than the a priori. In an
ideal assimilation system, with unbiased a priori fields and observations, this is not a
realistic result since observations always add information to the system even if they are
sparse and imprecise. However, our assimilation system is not ideal. In particular, the
a priori error specification is poor, since we assume a fixed relative error for the total25

emission, while in fact only the wetland emissions are wrong. Section 3.2.3 contains
an experiment in which only wetland emissions are optimised, indeed leading to better
results.
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SCIAMACHY samples a certain location once in six days, giving five measurements
per month. From an independent trajectory point of view one would need at least two
measurements in order to derive monthly emissions in conjunction with the concentra-
tion at the start of the month. If clouds affect ≈90% of the measurements, this criterion
is often not fulfilled. Therefore, it is essential to take partly cloudy pixels into account.5

The use of cloudy pixels in the inversion imposes additional requirements on the
quality of cloud parameters and albedo. Experiments 6a to e (Table 2) show the inver-
sion results when perfect cloud information is assumed to be available, as opposed to
the ’default’ uncertainties assumed in experiments 1 and 4a to d. For all values of the
measurement error the performance improves, but, as expected, this is most notable10

for the cases with the lowest errors in CH4.

3.2.3. A priori information

Experiments 7a to c (Table 2) show the result of different choices for the a priori error in
the emission field. The best result – slightly better than in the reference experiment 1
– is obtained when the a priori uncertainty is set to the actual value of the perturbation15

applied (50%), suggesting that the analysis system is nicely balanced. Strengthening
or relaxing the a priori constraint to uncertainties of 25% and 100%, respectively, yields
slightly worse results. Overall, the performance appears to be not very sensitive to the
precise value of the a priori error.

The emission estimates are more sensitive to the value of the a priori error decor-20

relation length scales of emissions, Ls, and initial concentrations, Lc0
. When both are

decreased from the default value of 1000 km to 500 km (experiment 8a), the RMS
reduction factor increases to 0.47. This could lead to the conclusion that there is not
enough information in the measurements to allow an effective resolution of ∼500 km.
However, when Lc0

is kept at 1000 km while Ls is reduced to 500 km (experiment 8b),25

the resulting r is about equal to that of the reference case. It appears that particularly
the initial concentration field needs a relatively large decorrelation length scale, since
otherwise the measurement noise introduces spurious small-scale features in the anal-
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ysis. For the emissions an effective resolution of 500 km appears to be feasible. When
Ls is further decreased to 250 km (experiment 8c), the RMS reduction factor becomes
0.52, indicating that there is not sufficient information in the measurements to resolve
the fluxes on this resolution.

There are a number of reasons why the setup used so far cannot perfectly reproduce5

the truth (r=0). These include the limited number of measurements and the error in
CH4 and cloud-parameter measurements. Another reason is that the complete emis-
sion field is optimised with a single error correlation length scale, whereas, the truth
– prior perturbation concerns only wetland emissions. Suppose we knew that all prior
emissions except those of wetlands were correct, then we could optimise the wetland10

emissions only. This is done in experiment 9 (Table 2), and leads to a very good per-
formance (r=0.28). In reality, one does not possess such knowledge. Still, information
on errors (and error correlations) in the different source categories can be used in the
inversion. Experiment 10 (Table 2) is an inversion of all source categories, all with
the same a priori error of 100%. This also gives an improvement with respect to the15

reference case. The advantage of optimising different source categories is particularly
clear in experiment 13 (compare with exp. 12c). The combined positive and negative
increments of the fossil-fuel and waste-handling emissions can be reproduced better if
these fields are distinguished in the inversion.

4. Conclusions and outlook20

In this paper we have shown the utility of four-dimensional variational assimilation for
the optimisation of methane emissions on the basis of observations from the SCIA-
MACHY satellite instrument. Sources are estimated over a time window of one month,
which is short compared to the atmospheric residence time of methane. A conse-
quence of this short time window is that errors in initial concentrations cannot be ne-25

glected. We have solved this problem by jointly optimising the emissions and the initial
concentration field. The feasibility of the method has been demonstrated using Ob-
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serving System Simulation Experiments (OSSEs).
Subsequently, a large number of OSSEs have been analysed in order to assess the

utility of SCIAMACHY measurements for methane source attribution. The sensitivity
of the source estimate to (random) CH4 observation errors, errors introduced by the
presence of clouds, and the specification of a priori errors has been investigated. From5

these experiments the following conclusions can be drawn.

– SCIAMACHY observations at a precision of 1 to 2% (single measurement) can
contribute considerably to uncertainty reduction in methane source strengths. The
temporal and spatial scales that can be resolved are estimated to be 1 month and
500 km, respectively.10

– It is essential to take partly cloudy pixels into account for emission estimates in
order to achieve sufficient spatial coverage. The relative importance of cloudy
pixels compared to cloud-free pixels will depend on the pixel size and coverage
of the satellite instrument (SCIAMACHY in our case). Future satellite instruments
will have higher overpass frequencies and much smaller ground pixels (like, for15

example, the OCO instrument for CO2 described in Crisp et al., 2004), and con-
sequently a relatively larger number of cloud-free pixels.

– The effective cloud fraction and cloud-top height of the partially cloudy satellite
footprints as well as the surface albedo should be retrieved as accurately as pos-
sible. According to our findings, errors in these parameters pose in some cases20

a larger limitation for the source estimation than errors in the methane measure-
ment itself.

Recent SCIAMACHY CH4 retrievals have an estimated precision of 1.5 to 2%
(Frankenberg et al., 2005). This kind of precision is sufficient for direct comparisons
with models and identification of some major large-scale uncertainties in the emission25

inventories used in the models. Future satellite instruments may improve upon the
performance of SCIAMACHY in the following respects:
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– Instrument design: a better spectral resolution and a more stable detector with
less dead and bad pixels is both desirable and achievable with present-day tech-
nology.

– Measurement strategy: smaller pixels and pointing at cloud-free scenes will in-
crease the number of cloud-free pixels. Such pixels contain most information on5

the boundary layer, where the signal of surface emissions is largest.

– Characterisation of the measurement scene: accurate knowledge on clouds and
aerosols is a prerequisite for a proper interpretation of the methane measure-
ments. Such information can be obtained, for instance, by measuring the O2-
A band with high spectral resolution, and by including dedicated high-resolution10

cloud and aerosol imagers.

We have not specifically investigated the effect of systematic errors in the satellite
observations on the inversion. There are many sources of such biases in methane
retrievals, either caused by the instrument itself, by the retrieval algorithm or by the
characterisation of the scene. Identification and removal of these biases is essential15

since systematic errors in measured methane will propagate directly to systematic er-
rors in derived emissions.

Concerning the inverse modelling system, several extensions will be considered in
the future:

– Surface observations at remote locations contain important information on the20

methane budget at continental to global scales. Optimal future assimilation sys-
tems should thus include both satellite and surface observations.

– Presently, mismatches between model and observations are attributed to errors in
methane sources (and initial concentrations). However, model uncertainties are
partly caused by errors in the modelling of the sinks. A generalised approach may25

be formulated in which the OH field is added to the 4D-var control vector together
with a realistic error estimate.
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– A detailed and realistic modelling of the error covariances of the initial concentra-
tions and emissions is crucial for a successful inversion. Regarding errors in the
initial concentrations (mainly transport errors): once real satellite data are consid-
ered, analysis of the observation minus model departures gives additional infor-
mation on error correlation lengths scales. Regarding errors in prior emissions:5

the models producing the prior emissions should be used to provide realistic esti-
mates of errors and their spatial correlations for the different source categories.

– In synthetic experiments the truth is known, and the inversion result can be evalu-
ated against this truth. In case of real measurements a posteriori error estimates
should be provided, which can be calculated as outlined in Müller and Stavrakou10

(2005).

In summary, we have presented a method for the estimation of methane concentra-
tions and emissions from SCIAMACHY measurements. This method is not restricted to
methane but can also be applied to carbon dioxide or shorter-lived trace gases such as
carbon monoxide and nitrogen oxides. Furthermore, OSSE type of experiments with15

4D-Var systems as described here will be important for assessing the potential benefit
of future satellite instruments.
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Table 1. CH4 emissions employed in this study. Global totals are presented both per year and
for the month March. Notes are: 1EDGAR version 3.2, year 1995; 2landfills scaled to 40 Tg yr−1;
35-year average of the period 1997–2001, with total forest burning scaled to 20 Tg yr−1 and
savanna burning to 15 Tg yr−1; 415-year mean field.

Source category Reference Emission (Tg CH4 yr−1)
Year March

Anthropogenic
Domestic ruminants EDGAR1 89 89
Fossil fuel production EDGAR1 87 87
Waste treatment EDGAR1,2 73 73
Rice cultivation Matthews et al. (1987) 60 28
Biomass burning Olivier et al. (2003)3 35 33
Biofuel EDGAR1 14 14
Minor sources EDGAR1 5 5

Natural
Wetlands Walter et al. (2001)4 155 138
Termites Sanderson (1996) 20 20
Ocean Houweling et al. (1999) 15 15
Wild animals Houweling et al. (1999) 5 5
Volcanoes Houweling et al. (1999) 4 4
Soil sink Ridgwell et al. (1999) −30 −25

Total 532 486
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Table 2. Parameters and results of sensitivity experiments: ∆s are perturbations in emissions
(see Sect. 2.4); ∆c0 are perturbations in initial concentrations (see this section); f(σo) is a
multiplicative factor applied to the observation error of Fig. 2; σs is the relative error in the
a priori emissions; f(σc0

) is a multiplicative factor applied to the a priori errors in the initial
concentration field as shown in Fig. 1. The result of the inversion, expressed through the RMS
reduction factor r of the inverted CH4 emission fields, is shown in the last column.

Exp Description ∆s ∆c0 f(σo) σs (%) f(σc0
) Note r

1 standard case Fig. 4c – 1 100 2 0.38
2a prior error in concentration field Fig. 4c Fig. 8a 1 100 2 0.43
2b Fig. 4c Fig. 8a 1 100 1 0.44
2c Fig. 4c Fig. 8a 1 100 10−3 0.74
3 optim. emissions only Fig. 4c – 1 100 10−3 0.48

4a observation error Fig. 4c – 0.25 100 2 0.35
4b Fig. 4c – 0.5 100 2 0.37
4c Fig. 4c – 2 100 2 0.40
4d Fig. 4c – 4 100 2 0.53
5 cloud-free pixels only Fig. 4c – 1 100 2 only pixels with fo<0.03 1.60

6a error in cloud parameters Fig. 4c – 0.25 100 2 zero error in f , pc and αs 0.27
6b Fig. 4c – 0.5 100 2 same 0.28
6c Fig. 4c – 1 100 2 same 0.33
6d Fig. 4c – 2 100 2 same 0.40
6e Fig. 4c – 4 100 2 same 0.49
7a prior error in emissions Fig. 4c – 1 25 2 0.42
7b Fig. 4c – 1 50 2 0.37
7c Fig. 4c – 1 200 2 0.41
8a error correlation length scales Fig. 4c – 1 100 2 Ls=Lc0

=500 km 0.47
8b Fig. 4c – 1 100 2 Ls=500 km 0.37
8c Fig. 4c – 1 100 2 Ls=250 km 0.52

9 distinguishing source categories Fig. 4c – 1 100 2 optim. only wetland source 0.28
10 distinguishing source categories Fig. 4c – 1 100 2 optim. all individual sources 0.33

11a halved emission perturbation 0.5×Fig. 4c – 0.25 50 2 0.42
11b 0.5×Fig. 4c – 0.5 50 2 0.46
11c 0.5×Fig. 4c – 1 50 2 0.47
11d 0.5×Fig. 4c – 2 50 2 0.53

12a fossil-fuel/waste-handling Fig. 4e – 0.25 100 2 0.90
12b emission perturbation Fig. 4e – 0.5 100 2 0.94
12c Fig. 4e – 1 100 2 0.96
12d Fig. 4e – 2 100 2 0.97
13 distinguishing source categories Fig. 4e – 1 100 2 optim. all individual sources 0.84
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Fig. 1. Vertical correlation of errors in methane concentrations as determined with the NMC
method. Shown is the square root of the elements of the background error covariance matrix
Bv . The pressure at the model levels is given on the right-hand side.
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Fig. 2. Modelled percentual random error in CH4 column-averaged mixing ratio observation as
a function of albedo and solar zenith angle.
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(a)

(b)

Fig. 3. Cloud information retrieved with the FRESCO algorithm from available SCIAMACHY
data for March 2004 binned on 1◦×1◦ grid cells. (a) Average cloud fraction. (b) Number of
cloud-free (f <0.03) pixels. The intervals are exclusive of the lower border and inclusive of the
upper border (for example: the dark-blue colour refers to 1 or 2 measurements in a grid cell).
The total number of pixels is around 667 000, of which 79 000 are cloud-free.
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Fig. 4. Illustration of the experiments: (a) a priori CH4 emissions; (b) monthly-mean CH4
column-averaged mixing ratio; (c) true minus a priori emissions for the wetland case; (d) dif-
ference between CH4 column fields from true and a priori runs at 1 April 2004 for the wetland
case; (e) as panel (c) but for the fossil-fuel/waste-handling case; (f) as panel (d) but for the
fossil-fuel/waste-handling case. 9440
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Fig. 5. Convergence of experiment 1: (a) cost function relative to its initial value; (b) gradient
of the cost function relative to its initial value; and (c) RMS reduction factor as a function of the
iteration step.
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Fig. 6. True minus posterior emissions for experiment 1.
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(a)

(b)

Fig. 7. Effect of prior error correlations illustrated for experiment 1: (a) percentage difference
between true and a priori emissions; (b) percentage difference between a posteriori and a priori
emissions.
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(a) (b)

(c) (d)

Fig. 8. Influence of error in initial concentrations: (a) true minus a priori initial column field,
applied in experiment 2 in addition to the emission perturbation from Fig. 4c; (b) true minus
posterior emissions for emission-only inversion (exp. 2c); (c) posterior minus prior initial col-
umn field for combined concentration–emission inversion (exp. 2a); (d) true minus posterior
emissions for combined concentration–emission inversion (exp. 2a).
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Fig. 9. Time series of observed minus background and observed minus analysed concentra-
tions for experiments 2a and 2c over a part of South America (70◦ W–50◦ W, 30◦ S–10◦ S). The
measurements have been averaged over three days; each data point represents around 600
pixels.
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